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Abstract—Adaptation and invariance to multiple environments
are both crucial abilities for intelligent systems. Model-agnostic
meta-learning (MAML) is a meta-learning algorithm to enable
such adaptability, and invariant risk minimization (IRM) is a
problem setting to achieve the invariant representation across
multiple environments. We can formulate both methods as op-
timization problems with the environment-dependent constraint
and this constraint is known to hamper optimization. Therefore,
understanding the effect of the constraint on the optimization is
important. In this paper, we provide a conceptual insight on how
the constraint affects the optimization of MAML and IRM by
analyzing the trainability of the gradient descent on the loss with
the gradient norm penalty, which is easier to study but is related
to both MAML and IRM. We conduct numerical experiments
with practical datasets and architectures for MAML and IRM
and validate that the analysis of the gradient norm penalty loss
captures well the empirical relationship between the constraint
and the trainability of MAML and IRM.

Index Terms—model-agnostic meta-learning, invariant risk
minimization, gradient norm penalty, regularization, trainability

I. INTRODUCTION

The capability to cope with various environments is essen-
tial for intelligent systems. On the one hand, the intelligent
systems should rapidly adapt to a new environment from
the environment in which they have been trained. On the
other hand, they also have to be robust against the noise
in each environment to assure that they learn the essential
patterns useful to multiple environments. These adaptation
and invariance with respect to environment are the crucial
capabilities for the multi-environment learning.

For the adaptability for the new environment, model-
agnostic meta-learning (MAML), an optimization-based meta-
learning algorithm, is known to be a successful algorithm for
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finding the solutions that are adaptive to unseen environments1

[2]. For the invariance to the environment-specific noise,
invariant risk minimization (IRM) is attracting increasing at-
tention as a problem setting that induces the optimal classifier
invariant to the environmental noise [1]. Both MAML and
IRM, and other multi-environment learning methods, aim to
minimize some energy function for all environments, while
satisfying some condition in each environment. Hence, they
are formulated as the optimization problems with environment-
dependent constraints. Because the constraint for MAML
determines how adaptive the obtained solution is and that
for IRM controls the invariance to the variations among the
environments, this constraint is essential for achieving the
optimization problem and should be as strict as possible.

Meanwhile, since the constraint affects the shape of the
overall energy landscape to be minimized, a too strict con-
straint is likely to increase the difficulty of the optimization [3],
[4]. This trade-off highlights the importance of comprehending
the relationship between the magnitude of the constraint and
the trainability of the optimization. The goal of this paper is
to elucidate this relationship for MAML and IRM.

However, the constraint makes the study of the optimization
problem complicated and challenges our conceptual under-
standing of its trainability. This motivates us to investigate the
trainability of an alternative problem that is related to MAML
and IRM but is easier to analyze. A key observation is that both
MAML and IRM are associated with loss minimization with

1To discuss MAML and IRM in a unified notation, we use the term
environment, instead of the term task, which has been conventionally used
in previous studies. We use the term environment as a general term that refers
to anything underlying the learning process, following the definition in [1].
Although the definition of a task varies among the different reports in the
literature, one reasonable interpretation in the context of supervised learning
is that a task is an index variable on which the data are conditioned. This
definition of a task is included in the above definition of environment.



the gradient norm penalty as we explain in Sections III and IV.
In this paper, therefore, we will examine the trainability of the
optimization on the loss with a gradient penalty. Specifically,
we will focus on gradient descent for this regularized loss
because gradient descent is the most commonly currently
used optimization method. In gradient descent, learning rate
is a crucial parameter that determines the trainability and a
too large learning rate results in loss divergence. Thus, we
will consider the maximum possible learning rate for a given
regularization coefficient such that gradient descent can find
local minima. Analysis of this alternative problem provides a
useful explanation on how the training of MAML and IRM is
determined by their constraints.

The rest of this paper is organized as follows. In Section
II, we introduce the gradient penalty loss. In Sections III
and IV, we show that MAML and IRM are associated with
loss minimization with the gradient penalty of negative and
positive signs, respectively. In Section V, we explain what
the flip in sign of the penalty between MAML and IRM may
indicate. In Sections VII and VIII, we discuss the acceptable
regularization coefficient and learning rate of negative and
positive gradient penalty loss for gradient descent to locally
reach a local minimum. For negative gradient penalty loss, we
find that the maximum possible learning rate increases when
the regularization coefficient is close to its upper bound. By
contrast, for the positive penalty, we show that the possible
learning rate decays quickly with increasing regularization.
In Section IX, we explain the result of the experiment to
verify the statements in the previous sections. The results show
that the relationship between the constraint and trainability of
MAML and IRM in Sections VII and VIII is qualitatively con-
sistent with the relationship observed in the experiment. This
result supports that the analysis of the gradient penalty loss is
useful for the elucidation of how the constraint influences the
successful training of MAML and IRM.

II. GRADIENT PENALTY LOSS

Suppose that we have a dataset D and a model fθ param-
eterized by p-dimensional parameter θ ∈ Rp. By using the
dataset and the model, we calculate the empirical risk L(θ).
Here, we define gradient penalty loss as follows:

L−(θ) := L(θ)− α ‖∇θL(θ)‖2 , (1)

L+(θ) := L(θ) + α ‖∇θL(θ)‖2 , (2)

where α is the regularization coefficient and ‖·‖ is the L2
norm. Gradient descent is performed on these loss functions
with the learning rate β. We refer to (1) as negative gradient
penalty loss, and (2) as positive gradient penalty loss.

Instead of using α above, in Sections VII and VIII, we use
α scaled by 1/2. This scaling is just for notational simplicity
and does not affect the qualitative relationship between α and
the upper bound of β. We note that in the following sections,
we use the notation of α and β a several times to mean
different concepts so that we can highlight the correspondence
of MAML and IRM to the gradient penalty loss.

III. RELATIONSHIP BETWEEN MODEL-AGNOSTIC
META-LEARNING AND NEGATIVE GRADIENT PENALTY

A. Background
MAML finds the solution from which it can quickly reach

the optimal solution θ∗τ for environment τ with few data. For
this purpose, MAML employs the bi-level gradient-based opti-
mization that consists of the inner-loop where the parameter is
updated in an environment-specific manner and the outer-loop
where the environment-invariant representation is learned.

Suppose that we sample environment τ from an environment
distribution P (τ). We split the data conditioned on each
environment into the data for the inner-loop and those for the
outer-loop. Usually, the former is called the training dataset
and the later is called the test dataset. The training and the
test dataset of environment τ are denoted by Dtrτ and Dteτ .

In the inner-loop, we sample a batch of data {Dtr
τν}Kν=1 ⊂

Dtrτ for each τ , and update the parameter by gradient descent:

θτ ← θ − α∇θ
1

K

K∑
ν

`
(
Dtr
τν ,θ

)
, (3)

where α is a step size known as the inner learning rate and
`(·, ·) is the loss function for each environment.

In the outer-loop, we compute the loss for the param-
eter updated in the inner-loop with a batch of test data
{Dte

τµ}Mµ=1 ⊂ Dteτ . Taking the average over the loss for each
sample, MAML minimizes the following loss

L̃(θ) :=
1

E

E∑
τ

1

M

M∑
µ

`

(
Dte
τµ,θ − α∇θ

1

K

K∑
ν

`
(
Dtr
τν ,θ

))
,

(4)
by gradient descent

θ ← θ − β∇θL̃(θ), (5)

where E is the number of environments, L̃(θ) is the loss that
MAML minimizes in the outer-loop, and β is the learning rate
called the meta-learning rate. This whole process is called the
meta-training. After the meta-training, the model is checked
if it can fine-tune to the new environment with few steps; this
process is called the meta-test.

B. Model-agnostic Meta-learning Virtually Minimizes Nega-
tive Gradient Penalty Loss

To observe the correspondence between MAML and neg-
ative gradient penalty loss minimization, we take the Taylor
series of the MAML loss (4) for the first-order term of inner
learning rate α. Then, we obtain

L̃(θ) =
1

E

E∑
τ

Lteτ (θ − α∇θLtrτ (θ)) (6)

≈ 1

E

E∑
τ

Lteτ (θ)− α∇θLteτ (θ)>∇θLtrτ (θ) (7)

=
1

E

E∑
τ

Lteτ (θ)− α
∥∥∇θLteτ (θ)

∥∥∥∥∇θLtrτ (θ)
∥∥ cos(aτ ),

(8)
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Fig. 1: Diagram of critical regularization coefficient αc of α and critical learning rate βc of β with respect to gradient descent of
(a) negative gradient penalty loss L(θ)− α

2∇θL(θ)>∇θL(θ) and (b) positive gradient penalty loss L(θ)+ α
2∇θL(θ)>∇θL(θ).

The solid curves are βc for the maximum and second maximum eigenvalues λmax, λ2nd max of L(θ)’s Hessian, respectively.
The dashed vertical and horizontal lines indicate αc and βc when α = 0. Parameters α and β should be in the colored area,
where α is smaller than αc and β is below both βc curves. For (a) negative gradient penalty loss, we find that βc of α close
to αc is larger than βc of α = 0. This suggests that α close to αc allows larger βc (Section VII). On the other hand, for (b)
positive gradient penalty loss, we find that critical learning rate βc quickly decays as α increases (Section VIII).

where Ltrτ (θ) := 1
K

∑K
ν ` (Dtr

τν ,θ), Lteτ (θ) :=
1
M

∑M
µ `

(
Dte
τµ,θ

)
, and aτ is the angle between ∇θLteτ (θ)

and ∇θLtrτ (θ). That is, MAML has a bias to increase the
inner product of the gradient vectors. Once cos(aτ ) becomes
negative, the penalty in (8) will be positive, drastically
increasing the total loss. Thus, it is fair to say that MAML has
a bias to make the cosine similarity positive. In Section IX-B,
we will explain that our simulation confirms that MAML
keeps cosine similarity positive in practice. Therefore, we
can conclude that MAML in effect minimizes the negative
gradient penalty loss. Specifically, if L(θ) = 1

E

∑E
τ L

te
τ (θ)

and s · ‖∇θLtrτ (θ)‖ cos(aτ ) = ‖∇θLteτ (θ)‖ are taken with
positive scalar s, (8) corresponds to (15) up to scale. When
you consider the full-batch training, (8) and (15) are identical.

The above conclusion suggests that MAML prefers the
larger gradient norm. In Section IX-B, we will explain that
MAML does in fact keep the gradient norm larger during
meta-training in our simulation. Since the solution with the
large gradient is favorable for quick loss minimization by gra-
dient descent, this bias may explain why MAML is successful
for few-shot adaptation. In fact, another simulation shows that
MAML finds the solution with the large gradient even in meta-
test, as will be explained in Section IX-B.

IV. RELATIONSHIP BETWEEN INVARIANT RISK
MINIMIZATION AND POSITIVE GRADIENT PENALTY

A. Background

Empirical Risk Minimization lets machines exploit spurious
correlation and fails to learn the pattern that they truly want to
learn. Based on the hypothesis that the spurious correlation is
unique to each environment, while the important correlations
are environment-independent, IRM aims to learn the represen-
tation that induces the environment-invariant optimal predictor.

Slightly abusing the notation of Lτ (θ) to also mean Lτ (fθ),
this problem is formulated as follows:

min
Φ:X→H
w:H→Y

∑
τ∈E

Lτ (w ◦ Φ) (9)

subject to w ∈ arg min
w̄:H→Y

Lτ (w̄ ◦ Φ), for all τ ∈ E , (10)

where X is the input domain, H is the hidden space, Y is
the output domain, and E is a set of environments. We note
that Φ is the feature extractor that maps the data to the hidden
representation, w is the predictor on top of the representation,
and w̄ is the optimal predictor.

B. Relation between Invariant Risk Minimization and Positive
Gradient Penalty

The optimization problem of (9) and (10) is difficult to
solve because of its bi-level structure. Therefore, IRMv1 was
proposed as an alternative heuristic problem formulation of
IRM [1]. IRMv1 rewrites the bi-level optimization into a
single-level optimization of a regularized loss:

min
Φ:X→Y

∑
τ∈E

Lτ (Φ) + α
∥∥∇w|w=1.0Lτ (w ◦ Φ)

∥∥2
. (11)

In this paper, we will refer to the loss to be minimized in (11)
as the IRMv1 loss.

Although there are some differences, it is observed that
IRMv1 loss is roughly associated with the positive gradient
penalty loss if you take L(θ) =

∑
τ∈E Lτ (Φ). Specifically,

in (11), if the gradient is taken with respect to θ, and
minimization and loss computation is performed for not only
Φ but also for θ, IRMv1 loss corresponds to (2). Thus, we
conjecture that the analysis of the trainability of the positive
gradient penalty is helpful for the study of the trainability of
IRMv1.



V. RELATION BETWEEN MODEL-AGNOSTIC
META-LEARNING AND INVARIANT RISK MINIMIZATION

FROM GRADIENT PENALTY PERSPECTIVE

In Section III and IV, we explained that MAML and
IRM are related to the gradient penalty losses of different
signs. Prior to the analysis of trainability, we investigate the
connection between MAML and IRM in greater depth.

The problem that MAML solves is formulated as follows:

min
θ

min
‖dτ∈E‖≤ε

Lτ (θ + dτ ), (12)

where dτ is the p-dimensional vector and ε is an infinitesimal
value. Usually, few-step gradient descent is used to execute
the inner minimization, as explained in Section III. On the
other hand, IRM solves the out-of-distribution (OOD) problem
defined as follows [5], [6]:

min
θ

max
τ∈E

Lτ (θ). (13)

When the environment-dependent adjustment dτ is allowed
for (13) and the inner maximization is approximated by the
maximization with respect to dτ , (13) becomes the following
problem:

min
θ

max
‖dτ∈E‖≤ε

Lτ (θ + dτ ). (14)

Thus, if we perform the inner maximization by the single-
step gradient ascent, we can rewrite (14) as loss minimization
with the positive gradient penalty, in the similar manner to
Section III. That is, we can interpret the flip in the sign of
the penalty between MAML and IRM as the difference in the
minimization and maximization in the inner optimization.

This formal similarity is not only a coincidence. Because
the goal of MAML is adaptation to each environment, MAML
requires the minimization of the loss for each environment.
By contrast, IRM seeks to exclude the environment-specific
information as much as possible, and it considers the envi-
ronmentwise loss maximization. That is, MAML and IRM
differ in the sign of the penalty term because of the difference
in their requirements for each environment. Although this
paper focuses on the trainability of MAML and IRM, this
formal similarity is likely to highlight the hidden relationships
between the various multi-environment learning algorithms.
We would like to address these questions in future work.

VI. RELATED WORKS

A. Model-agnostic Meta-learning

Meta-learning algorithms can be categorized into three sub-
categories: black box/model-based [7], [8], metric learning
based [9], [10], and optimization-based [2], [11], [12]. MAML
is a well-known optimization-based algorithm and has recently
been extensively studied. For example, MAML is used for
continual learning [13], [14], reinforcement learning [2], [15],
[16] and probabilistic inference [17], [18].

Since MAML is known for being difficult to train [3], sev-
eral papers studied the trainability of MAML. Some proposed
heuristics to perform better training [3], [4], while the others
provide the mathematical proofs of the convergence condition

of MAML and its variants [13], [19]–[23]. In contrast to these
studies, the goal of our paper is to provide a conceptual insight
on how the inner learning rate influences the maximum possi-
ble meta-learning rate in practice. Specifically, we describe this
critical meta-learning rate as a function of the inner learning
rate, which has not been done in previous studies.

B. Invariant Risk Minimization

IRM is known to deal with the out-of-distribution general-
ization problem [5], [6] and can be formulated as game [24].
There are several seminal subsequent works that proposed the
new algorithms or studied the property of IRM [5], [6], [24]–
[29]. Among them, a few works studied a topic related to the
trainability of IRM. Some works discussed the condition for
IRM to successfully work [5], [29] and a work studied the
convergence of the IRM game [25]. Our study differs from
these studies in that we focus on the trainability of solving
IRMv1 by gradient descent and elucidate how the regular-
ization coefficient affects the acceptable learning rate for the
gradient descent to work. Therefore, our paper contributes to
the first step for the study of this research direction.

VII. TRAINABILITY ON NEGATIVE GRADIENT PENALTY
LOSS AND MODEL-AGNOSITC META-LEARNING

In this section and the next section, we will consider the
condition to satisfy such that the gradient descent of the
gradient penalty loss find local minima. Specifically, we will
discuss the conditions for the learning rate and regularization
coefficient that should be satisfied for steepest gradient descent
to locally converge to a local minimum from any point in the
vicinity of it. In this section, we will examine the gradient
descent for the negative gradient penalty loss to study the
trainability of MAML.

A. Condition That α Should Satisfy for a Fixed Point to be a
Local Minimum

To analyze the behavior around a local minimum, we first
consider when a fixed point of negative gradient penalty loss
will be a local minimum. Taking the Taylor series for the
second-order term at a fixed point θ∗, the negative gradient
penalty loss around the fixed point is given by

L−(θ) ≈ L−(θ∗) +
1

2
(θ − θ∗)>H−(θ − θ∗), (15)

where H− = H − α
(
Tg +H2

)
is the Hessian matrix of

L−(θ) at θ∗. Note that g = ∇θL(θ∗) ∈ Rd, H = ∇2
θL(θ∗) ∈

Rd×d, and T = ∇3
θL(θ∗) ∈ Rd×d×d. Here, we presume that

Tg is negligible compared to H2 and will thus assume that
H− = H − αH2. Considering the purpose of studying the
trainability of MAML, this is justified because we confirm
that the empirical Tg is much smaller than the empirical H2

of MAML, which we will explain in Section IX-C.
With a diagonal matrix ΛH− for which the entries are the

eigenvalues of H− and a matrix P the rows of which the are
eigenvectors of H−, PΛH−P

> = P [ΛH − αΛ2
H ]P>. The

necessary condition for θ∗ to be a local minimum is that



H− is positive semi-definite, or all of its eigenvalues are non-
negative. Therefore, the condition of α for θ∗ to be a local
minimum is

∀i, λ(H−)i = λ(H)i − αλ(H)2
i ≥ 0 (16)

⇒ ∀i, α ≤ 1

λ(H)i
, (λ(H)i 6= 0) or λ(H)i = 0, (17)

where λ(A)i is the ith eigenvalue of a matrix A. Defining 1/0
to be ∞, the condition for θ∗ to be a local minimum is

∀i, α ≤ 1

λ(H)i
. (18)

Hence, the maximum bound, or critical regularization coeffi-
cient αc of α is the inverse of the largest eigenvalue of H .

B. Condition That β Should Satisfy for Gradient Descent to
Locally Converge to the Local Minimum

Next, we will consider how large we can set the learning
rate β for the optimizer to reach the local minimum from the
vicinity of it, which is an extension of [30]. Since PP> = I ,
the negative gradient penalty loss can be written as

L−(θ) ≈ L−(θ∗) +
1

2
((θ − θ∗)>P )P>H−P (P>(θ − θ∗)).

(19)
Therefore, the update equation of the parameter θ with gradi-
ent descent is

θ(t+ 1)− θ(t) = −β∇θL−(θ) = −βH−(θ − θ∗), (20)

where t is the number of iterations. Hence, θ(t + 1) − θ∗ =
(I−βH−)(θ(t)−θ∗) and the negative gradient penalty loss is
L−(v) ≈ L−(0) + 1

2v
>ΛH−v by denoting P>(θ−θ∗) by v.

Because the gradient of L−(v) for v is ∇vL−(v) = ΛH−v,
the equation for the updating of v is

v(t+ 1) = v(t)− βΛH−v(t) = (I − βΛH−)v(t), (21)

where v(t) is the value of v at iteration t. Assuming that (28)
holds, the condition of β is as follows: for all i,

|1− βλ(H − αH2)i|= |1− β(λ(H)i − αλ(H)2
i )|<1 (22)

⇒ −1 + β(λ(H)i − αλ(H)2
i ) < 1 (23)

(∵ λ(H)i − αλ(H)2
i ≥ 0 holds because of (28)) (24)

⇒ β <
2

λ(H)i − αλ(H)2
i

. (25)

C. βc Becomes Large When α is Close to αc
In Sections VII-A and VII-B, we discussed the conditions

of α and β. Consequently, the condition for locally converging
to local minima is given by

∀i, α ≤ 1

λ(H)i
∧ β ≤ 2

λ(H)i − αλ(H)2
i

. (26)

If α = 0, β ≤ 2
λmax

is the condition that β must satisfy, where
λmax is the largest eigenvalue of H . However, when α is close
to its upper bound αc, the upper bound βc of β becomes larger
than that with α = 0. This is because 2

λ(H)i−αλ(H)2i
goes to

infinity as α approaches 1
λ(H)i

for each i, and (26) should

hold for all i. That is, βc of the negative gradient penalty
loss is larger than that of α = 0 when α is close to αc, and
the bound is determined by both the maximum and second-
maximum eigenvalues of the Hessian. The diagram of this
relation between α and βc is shown in Fig. 1 (a). The x-axis
and y-axis indicate α and β, and the curves correspond to

2
λ(H)i−αλ(H)2i

of the largest and the second largest λ(H)i,
respectively. Considering that α and β correspond to the
inner learning rate and the meta-learning rate for MAML, we
conjecture that MAML can take larger critical meta-learning
rate when the inner learning rate is close to its upper bound.

VIII. TRAINABILITY ON POSITIVE GRADIENT PENALTY
LOSS AND INVARIANT RISK MINIMIZATION

In this section, we will derive the condition for the gradient
descent of the positive gradient penalty loss to find local
minima for studying the trainability of IRM. The procedure
for the analysis is basically the same as that in Section VII.

A. Condition That α Should Satisfy for a Fixed Point to be a
Local Minimum

The positive gradient penalty loss at a fixed point θ∗ is

L+(θ) ≈ L+(θ∗) +
1

2
(θ − θ∗)>H+(θ − θ∗), (27)

where H+ = H+α
(
H2 + Tg

)
. Similar to Section VII-A, we

will ignore Tg. Then, similar calculus reveals the condition
that α should satisfy:

∀i, λ(H+)i = λ(H)i + αλ(H)2
i ≥ 0. (28)

If λ(H)i is positive, (28) always holds since α is positive by
definition. If λ(H)i is negative, (28) will be α ≤ − 1

λ(H)i
for

all i. Yet, it is known that negative eigenvalues of Hessian in
neural network training are scarce and very small [31], [32].
Thus, this is not likely to affect the optimization in practice.

B. Condition That β Should Satisfy for Gradient Descent to
Locally Converge to the Local Minimum

We follow the similar procedure to that in Section VII-B
again. Then, the condition for β is as follows: for all i,

|1− βλ(H + αH2)i|= |1− β(λ(H)i + αλ(H)2
i )|<1 (29)

⇒ β <
2

λ(H)i + αλ(H)2
i

. (30)

C. βc Decreases Quickly as α Increases

Summarizing the condition of α and β, the condition to
locally converge to local minima is given by

∀λ(H)i ≤ 0, α ≤ − 1

λ(H)i
∧ ∀i, β ≤ 2

λ(H)i + αλ(H)2
i

.

(31)
As explained above, negative eigenvalues are not likely to
affect the trainability in practice and thus we only consider
the positive eigenvalues. The diagram of the critical learning
rate is shown in Fig. 1 (b). The x-axis and y-axis indicate α and
β, and the curve corresponds to 2

λ(H)i−αλ(H)2i
of the largest

λ(H)i. It is observed from Fig. 1 (b) that the critical learning



rate βc decreases with increasing regularization coefficient α,
in contrast to the case for negative gradient penalty. Therefore,
we expect that also for IRMv1, the critical learning rate
decreases rapidly as regularization coefficient increases.

IX. NUMERICAL SIMULATION

A. Setup for Model-agnositc Meta-learning

To empirically validate our findings in previous sections,
we conducted simulations with benchmark tasks and practi-
cal model architectures. Specifically, we performed Omniglot
and Mini-ImageNet classification, and sinusoid regression for
MAML [2], [8], [33]. The setup of each experiment is de-
scribed below. Unless otherwise noted, all of the experiments
about MAML in the following sections follow this setup.

1) Sinusoid Regression: The task in each environment is to
regress a sine wave with an amplitude in the range of [0.1, 5.0]
and phase in the range of [0, π] based on the data points in
the range of [−5.0, 5.0]. A ReLU multilayer perceptron with
two hidden layers of size 40 was trained with SGD. The batch
size of data is 10, the number of environments is 100, and one
step is taken for the update in the inner-loop.

2) Omniglot and Mini-ImageNet Classification: The Om-
niglot and Mini-ImageNet datasets are benchmark datasets
for few-shot classification. The model used is the same as
that in [2], and hence, [9] used. The task is a five-way one-
shot classification, where the query size is 15, the number of
update steps is one, and the batch size of the environments is
32 for Omniglot and four for Mini-ImageNet. In this setup,
we trained 60000 iterations for the Omniglot and 12 epochs
(10000 iterations per epoch) for Mini-ImageNet. SGD is used
as the optimizer for both the inner-loop and the outer-loop.

B. Cosine Similarity and Gradient Norm of Model-agnostic
Meta-learning

We will check if three statements in Section III hold: cosine
similarity remains positive in the meta-training, gradient norm
is kept large in the meta-training, and MAML finds the solu-
tion at which the gradient in the meta-test is large. To that end,
we conducted Omniglot and Mini-ImageNet classification.

1) Meta-training: We computed the gradient norm with
the test data and the cosine similarity between the gradient
with the training and the test data every 6000 iteration for
Omniglot and 10000 iteration for Mini-ImageNet. Specifically,
we computed the cosine similarity and the gradient norm
per environment, and subsequently the average is computed,
respectively. The parameters α and β are the following values;
for Omniglot, α = 4e − 1 and β = 1e − 3, and for Mini-
ImageNet, α = 1e − 2 and β = 1e − 3. We used the Adam
optimizer for the outer-loop training with these β [34].

The results for the cosine similarity of (a) Omniglot and (b)
Mini-ImageNet are shown in Fig. 2. Here, the x-axis is the
number of iterations and the y-axis is the cosine similarity.
The dashed line indicates the cosine similarity equal to zero.
It is clear that cosine similarity remains positive throughout
the meta-training, validating our conjecture in Section II.
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Fig. 2: Cosine similarity between the gradient of the training
loss and test loss for (a) Omniglot and (b) Mini-ImageNet.
Cosine similarity remains positive during meta-training, sup-
porting the statement in III.
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Fig. 3: Gradient norm of MAML (α > 0) compared to that of
α = 0 for (a) Omniglot and (b) Mini-ImageNet. Gradient norm
is larger for MAML throughout meta-training, confirming that
MAML has a bias toward large gradient.

Fig. 3 shows the gradient norm for (a) Omniglot and
(b) Mini-ImageNet in the meta-training. We compared the
gradient norm of MAML (α > 0) with that of α = 0. Here, the
x-axis is the number of iterations and the y-axis is the gradient
norm. The blue and orange lines are the gradient norms of
α = 0 and MAML (α = 4e − 1). We confirm that MAML
retains a greater gradient norm than the case of α = 0.

2) Meta-test: After the meta-training, we computed the
gradient norm with meta-test data for Omniglot and Mini-
ImageNet. The batch size of the environment is one and
we computed the averaged gradient norm over 992 runs for
Omniglot and 100 runs for Mini-ImageNet. The results are
shown in Fig. 4 for (a) Omniglot and (b) Mini-ImageNet,
where the y-axis is the gradient norm. It is observed that the
gradient norm of MAML (α > 0) is larger than that of α = 0
even during the meta-test.

C. Magnitude of Tg and H2 of Model-agnostic Meta-learning

To validate ignoring Tg in Section VII-A, we empirically
calculated Tg and H2 of MAML and compared them. To
that end, we conducted sinusoid regression in the setup of
Section IX-A because the calculation of Tg and H2 is com-
putationally expensive for architectures used in Omniglot and
MiniImageNet classification. Concretely, we used the training
error after 50000 iterations to compute them.

To compare Tg and H2, we calculated the top and the
second top eigenvalues and Frobenius norm of Tg, H2 and
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Fig. 4: Comparison of gradient norm between MAML (α > 0)
and that of α = 0 at meta-test. Both the results of (a) Omniglot
and (b) Mini-ImageNet show that gradient norm is large for
MAML, suggesting that the solution MAML finds has larger
gradient even for meta-test loss.
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Fig. 5: Top (a) and second top (b) eigenvalue of Tg, H2 and
Tg+H2, and Frobenius norm of Tg and H2 (c). The top and
the second top eigenvalue of Tg +H2 is almost the same as
that of H2, while that of Tg is much smaller. Frobenius norm
of Tg is much smaller than that of H2.

Tg +H2. Frobenius norm is a common measure to compare
two matrices. The reason why we calculated eigenvalues is that
large eigenvalues are important for upper bound, as explained
in Section VII-C. The results of the top eigenvalue, the second
top eigenvalue, and Frobenius norm are shown in Figs. 5
(a), (b), and (c), respectively. Here, the y-axis indicates the
magnitude of Tg, H2, and Tg +H2 that are indicated in x-
axis. In all cases, magnitude for Tg is much smaller than that
of H2, supporting the assumption that we can ignore Tg.

D. Large inner learning Rate Allows Large Critical Meta-
Learning Rate for Model-agnostic Meta-learning

In this section, we will present the results of experiments
to confirm that MAML allows a larger meta-learning rate β if
the inner learning rate α is close to its upper bound. For that
purpose, we computed the training loss after fixed iterations
for various set of α and β. This experiment finds the critical
learning rates above which the training loss diverges.

1) Sinusoid Regression: We computed the training loss
after 500 iterations with α in the range of [1e − 4, 9e − 1]
and β in the range of [1e − 2, 9e − 0]. Fig. 6 (a) shows the
training losses with various values of α and β. The dashed line
indicates β of α = 0 over which the loss diverges. According
to Fig. 6 (a), if α is close to the value above which the
losses diverge, a larger β can be used. This result confirms
that MAML allows larger β if α is close to its critical value
αc.

2) Classification: We computed the training losses after
100 iterations for Omniglot and one epoch for Mini-ImageNet
with various values of α and β; for Omniglot, α is in the range
of [1e−3, 9e−0] and β is in the range of [1e−1, 9e+1], and
for Mini-ImageNet, α is in the range of [1e−4, 9e−1] and β
is in the range of [1e−2, 9e−0]. Figs. 6 (b) and (c) show the
training losses at various values of α and β. The dashed line
indicates β of α = 0 above which the training loss diverges.
As shown in Figs. 6 (b) and (c), the maximum β is larger at
large α. Even though the architecture is a convolutional neural
network with batch normalization [34] and practical dataset is
used, our expectation in Sections VII and VIII is confirmed.

E. Invariant Risk Minimization’s Large Regularization Coef-
ficient Does Not Allow Large Critical Learning Rate

We will explain the result of the experiment to validate that
the critical learning rate βc decays quickly as the regularization
coefficient α of IRMv1 increases. We performed colored
MNIST classification, a bench mark task of IRM, by IRMv1
[1]. We employed a ReLU fully-connected neural network
with one hidden layer as the feature extractor and fixed the
classifier to 1: this is the architecture used in [1]. For the
feature extractor, the width of hidden layers is 256, the input
dimension is 14 × 14, and the output dimension is one. We
computed the averaged training loss for 10 runs for various
sets of α and β: α was in the range of [1e−2, 9e+2] and β was
in the range of [1e−2, 9e+1]. Each run is a full-batch gradient
descent training of 500 iterations. To focus on the pure effect
of IRMv1, we discarded all of the tricks used in [1], namely
penalty annealing, penalty weight scaling, and weight decay.
Fig. 6 (d) shows the training losses at the various values of α
and β. The dashed line indicates β of α = 0 above which the
training loss diverges. As shown in Fig. 6 (d) the maximum β
quickly decreases with increasing α. This result supports our
conjecture that critical learning rate decreases quickly as the
regularization coefficient of IRMv1 gets larger.

X. CONCLUSION

We studied the trainability of MAML and IRM by analyzing
the trainability of the gradient descent of the loss with the
gradient penalty. We explained that MAML and IRM are
related to loss minimization with negative and positive gradient
penalties, respectively, and that this relationship reflects the
requirement of MAML and IRM for each environment.

For negative and positive penalty losses, we investigated
the acceptable learning rate and regularization coefficient for
gradient descent to locally reach a local minimum. We found
that the critical learning rate for the negative gradient penalty
becomes larger when the regularization coefficient is close
to its critical value, while that for its positive counterpart
decreases rapidly as the coefficient increases. Our experiment
supports all of the findings empirically with the practical
dataset and architecture for both MAML and IRM.
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