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Abstract

In the journey toward automated machine learning research,
experimental code templates play a crucial role. Template
design involves a fundamental trade-off: specific templates
aid complex experiment generation but limit flexibility, while
abstract templates offer flexibility but provide less support
for complexity. Thus, designing templates at an appropri-
ate abstraction level is essential. This short conceptual paper
presents an idea of an experiment code template design in ma-
chine learning research automation. We propose representing
controlled experiments as comparisons between base and de-
rived classes, where the control group is implemented as a
base class representing typical machine learning workflows,
and experimental interventions are implemented through in-
herited classes with targeted method overrides. While our cur-
rent framework has several limitations, our demonstration ex-
amples show its potential to provide a flexible and abstract
framework for ML research automation while preserving the
structure needed for complex experiment automation. Code is
available here: https://github.com/t46/ml-control-experiment
Note: This report is a conceptual paper, presenting ideas
along with a few preliminary examples rather than a technical
paper with solid experimental supports.

Introduction
Machine learning research automation has made significant
strides in recent years, showing a potential for a future piv-
otal shift in how we approach scientific discovery in this
field (Lu et al. 2024; Ifargan et al. 2024; Li et al. 2024b;
Weng et al. 2024; Huang et al. 2024). As we conceptual-
ize research as the process of proposing and validating new
ideas and discoveries (Schickore 2022), the automation of
machine learning research necessitates the automation of not
only discovery but also verification; especially both auto-
mated planning and execution of experiments.

Previous work in this domain has primarily focused on
representing experiments as Python scripts, with automation
achieved through the generation, modification, and execu-
tion of these scripts (Lu et al. 2024; Li et al. 2024b; Takagi,
Yamauchi, and Kumagai 2023). While the long-term vision
will be to generate human-level research code completely
from scratch, current limitations in experiment code gener-
ation capability of AI require carefully crafted experimental
template codes to produce high-quality experimental imple-
mentations (Lu et al. 2024). For instance, you may need ex-
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Figure 1: Trade-off in experiment code template design: spe-
cific code templates enable complex experiment implemen-
tations but limit flexibility, while generic templates offer
broader applicability at the cost of functionality. The chal-
lenge lies in finding the right balance between specificity
and adaptability in template design.

plicit specification of datasets, metrics, and model architec-
tures within their templates.

As an intermediate step in transitioning from fully speci-
fied templates to a state with minimal or no predefined struc-
ture, it is crucial to increase the abstraction level of the infor-
mation contained within these templates. While specificity
in experimental code templates helps AI generate complex
experiment code, too much detail reduces flexibility, making
it harder to adapt the templates to diverse research ideas and
research topics. For example, an experimental code template
designed to validate the effectiveness of a newly proposed
neural architecture for image classification would not only
be unhelpful for an experiment aimed at validating the ef-
fectiveness of a new prompt design for text generation, but
it might even introduce unintended biases when the AI gen-
erates code. Thus, designing templates at an appropriate ab-
straction level is essential for enabling AI to flexibly gen-
erate experimental code that can adapt to different research
ideas and contexts.

This paper proposes a conceptual framework for design-
ing machine learning experiment code templates based on
three interconnected principles. First, we adopt the view of
representing machine learning processes as abstract work-
flows, as is done in fields such as MLOps. We consider a
machine learning process as a sequence that encompasses
model and data initialization, model training, and prediction

https://github.com/t46/ml-control-experiment


generation using the updated model.
Second, we frame controlled experiments in machine

learning research as a process involving two workflows and
a single evaluation criterion. One workflow represents the
control group, while the other represents the experimental
group with an added intervention—new proposal in ML re-
search. The evaluation criterion then serves to assess the ef-
fectiveness of this intervention, measuring the impact of the
proposed approach against the control baseline.

Third, we propose expressing experimental group work-
flow through inheritance from a control group workflow.
By using object-oriented principles, experimental variations
are implemented as inherited classes that modify or ex-
tend a base workflow representing the control condition.
This approach is expected to provide a more flexible and
abstract framework for representing experimental designs
while maintaining the structure necessary for automated ex-
ecution.

In this short report, we first detail this idea of experiment
code template design. Then, we explain a potential of this
idea as flexible but moderately specific code template with
subjective examination against few examples generated by a
prototype system following the proposed idea. The point of
this conceptual paper are summarized as follows:

• We discuss the potential role of template code in the au-
tomation of machine learning research and emphasize the
importance of designing template code with an appropri-
ate level of abstraction.

• We abstractly describe the machine learning workflow as
a process of modifying a learner using data and then ap-
plying the modified learner to the data.

• We propose an idea of flexible template code design for
machine learning experiments by abstractly describing
a base class that represents a control group in a ma-
chine learning workflow. Experimental groups are cre-
ated through subclassing and method overrides, facilitat-
ing comparative evaluation as part of a controlled exper-
imental process in machine learning.

• Using a few generated examples, we demonstrate the
feasibility of conducting controlled experiments with
proposed approach. We show that the proposed tem-
plate design has a potential to make complex experi-
ment implementations easier compared to having no tem-
plates, while maintaining greater flexibility than domain-
specific templates.

Proposed Idea
To effectively automate machine learning experiments, you
must carefully abstract and organize the process of both “ex-
perimentation” and “machine learning.” In this section, we
present an approach to characterizing these elements.

Machine Learning Workflow
We recognize the challenge of creating a universally com-
prehensive characterization of all machine learning ap-
proaches and acknowledge that more refined definitions ex-
ist in fields such as MLOps and theoretical machine learning

research. Nonetheless, we propose a working characteriza-
tion to serve as a foundation for future refinement.

In one view, machine learning can be conceptualized as
a process involving a learner and data, where the learner
is trained on a subset of the data and subsequently gener-
ates outputs for previously unseen data. In other words, we
represent the machine learning process here as a workflow
consisting of two sub-processes: model training and model
inference, each taking the model and data as inputs. For sim-
plicity, we refer to this workflow as the MLWorkflow in this
paper. A high-level illustration of MLWorkflow is shown in
Fig. 2.

This characterization is intentionally abstract, providing a
flexible template that can encompass a broad range of ma-
chine learning research. The process introduced here seems
to be widely applicable across different machine learning re-
search domains. For example, while image generation and
text generation research may differ in the content of their
models and data, they both share the common requirement
of needing a model and data. At the same time, in both re-
search areas, it seems common to require either training or
running model as part of validating the proposal.

On the other hand, since the content of the data and model
naturally differs, a template code specialized for image gen-
eration would likely not be useful for text generation. More-
over, even if we restrict the focus to text data and LLMs,
a template designed for studies on LLM mechanistic inter-
pretability may not suit research aimed at proposing new
language model architectures. This is why a template code
that describes the machine learning process in an abstract
way is considered important.

Characterizing Control Experiment
Before presenting an abstract description of machine learn-
ing experiments, we will first briefly review general concepts
related to experimentation. Although experiments can take
various forms, our focus here is on controlled experiments,
a type commonly adopted in machine learning research.

At its core, an experiment is an empirical effort to test
hypotheses or ideas, carrying inherent uncertainty since the
validity of these ideas is unproven. In a controlled exper-
iment, this testing involves comparing two groups: an ex-
perimental group that receives an intervention and a control
group that does not. In such comparisons, it is essential to
carefully define what is being compared and how. For exam-
ple, if an intervention is expected to improve the reliability
of model outputs, reliability should be measured with appro-
priate metrics, and these scores should be compared between
the two groups.

Therefore, controlled experiments necessarily comprise
three essential components: (1) a control group, (2) an ex-
perimental group (the control group plus an intervention),
and (3) an evaluation method that defines what to evaluate
and how. The validity of the intervention is verified by com-
paring components (1) and (2) in terms of component (3).

Representation of ML Experiments
Building on our previous abstractions of machine learning
and experimentation, we can understand controlled experi-
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Figure 2: MLWorkflow: Abstract typical workflow of machine learning. In much machine learning research, both data and a
learning model are required. Part of the data is used as training data to train the model, and the trained model is then applied
to data not used in training. In actual machine learning research, both data preparation and model preparation are involved, so
while these are essential, treating them merely as “inputs” may not be appropriate. Please note that what is presented here is
just a simplified representation of machine learning process and further refinement is necessary.

ments in machine learning research as processes that com-
pare two versions of MLWorkflow - one with an intervention
and one without - using specific evaluation criteria to vali-
date the intervention’s effectiveness. That is, in this frame-
work, (1) the control group is represented by the basic ma-
chine learning workflow, (2) the experimental group is the
workflow with modifications, and (3) the evaluation method
determines how to assess the validity of these modifications.

Here, note again that “intervention” corresponds to a new
proposal in the research and the evaluation method assesses
the proposal’s validity, not just the model’s performance. For
example, when proposing a new neural architecture, the in-
tervention would involve replacing the baseline model in the
existing workflow with the proposed architecture, with clas-
sification accuracy serving as the evaluation metric. Simi-
larly, when proposing a faster-converging optimizer, the in-
tervention would involve replacing the existing optimizer,
and the evaluation might measure the number of steps re-
quired to reach a specific loss threshold.

Code Representation of Controlled Experiments in ML
Research We now propose a specific approach to express-
ing these elements in code. The key point is that controlled
experiments require maintaining identical conditions be-
tween groups except for the intervention. We suggest that
this requirement aligns naturally with the concepts of class
inheritance and method overriding in object-oriented pro-
gramming.

Class inheritance allows a derived class (child class) to in-
herit functionality and properties from an existing class (par-
ent or base class). Method overriding enables the derived
class to replace specific methods from the base class with
new implementations while maintaining the same method
name. Therefore, we can represent the control group with a
base class and create the experimental group by inheriting
from this base class and overriding specific methods to im-
plement the intervention. Specifically, we define an MLWo
rkFlow class to represent the machine learning workflow
and create a NewMLWorkFlow class that inherits from it,

implementing research proposals through method overrides.
The use of inheritance offers particular advantages in the

context of contemporary code generation and modification
using Large Language Models (LLMs) since current LLMs
struggle to follow strict rules. When modifying code for con-
trolled experiments, we need LLMs to create experimental
groups while preserving the control group code. By manag-
ing base and derived classes in separate files, we can provide
the base class as context while limiting LLM modifications
to the derived class. This approach allows us to create ex-
perimental groups that inherit functionality from the con-
trol group without risking modifications to the control im-
plementation.

Having established our representation of control and ex-
perimental groups, we turn to the expression of evaluation
methods. We can conceptualize evaluation methods as func-
tions that take “outputs” from both groups as input and
produce validation results. Importantly, these “outputs” are
not necessarily limited to model predictions. For instance,
in the optimizer comparison example introduced above, we
need both “loss values” and “step counts” relative to spe-
cific thresholds in order to measure the number of steps re-
quired to reach a loss value. In other words, what serves as
the input to the evaluation function in the MLWorkflow can
vary depending on what aspect is intended to be evaluated.
Therefore, the evaluation method’s input is more accurately
described as “logs of intermediate artifacts generated dur-
ing workflow execution that are necessary for validation.”
We should therefore design evaluation functions to receive
intermediate artifacts from two machine learning workflows
as input and produce comparison results as output.

In summary, we propose representing controlled exper-
iments in machine learning research through an object-
oriented paradigm: the control group is defined as a base
class, the experimental group inherits from this base class
with specific interventions, and the comparison between
these classes is evaluated using targeted performance met-
rics receiving the logs of intermediate artifacts from the



both workflows. For the convenience, we call this frame-
work Controlled Experiments as Represented by Inheritance
(CERI) framework in this paper.

Implementation
Having explained the high-level concepts of our proposal,
we will now describe the implementation of this framework
for the current demonstration.

Overview
We prepared a main script called run controlled expe
riment.py (provided in the GitHub repository) to execute
controlled experiments, which is represented as the combi-
nation of experiment.py and mlworkflow.py.

First, the main script generates the research idea, which
comprises two components: the research context and the
proposition idea. The research context is a text description of
the research problem and its background, while the propo-
sition idea presents the potential solution to the problem. In
our implementation, we instruct the LLM to generate these
research ideas. As LLM, we used gemma2:9B. For simplic-
ity we ask them to use google/gemma-2-2b-it in their
study. The prompt used for idea generation is included as
Fig. 25 in Appendix. While we opted for a simple prompting
approach to idea generation for this study, it’s worth noting
that there exists a rich body of more sophisticated methods
in previous research for research idea generation (Lu et al.
2024; Baek et al. 2024; Yang et al. 2024; Wang et al. 2023;
Li et al. 2024a; Pu et al. 2024; Radensky et al. 2024; Gu and
Krenn 2024; Hu et al. 2024; Xiong et al. 2024).ncorporating
these methods into our framework would improve the qual-
ity of generated ideas, while the integration process would
be straightforward.

Following idea generation, the script automatically fetch
the suitable dataset. Then, the Aider (Aider-AI 2024), an
LLM-based code editor previously used in ML research au-
tomation (Lu et al. 2024), modifies experiment.py by
overriding methods in the NewMLWorkFlow class. This
class inherits from MLWorkFlow, which is defined in
mlworkflow.py.

The context provided to the code editor included the re-
search idea, information about the automatically acquired
dataset and its structure, and details about both the control
group (MLWorkFlow) and experimental group (NewMLW
orkFlow). The specific tasks given to the editor included
implementing method overrides in NewMLWorkFlow and
implementing the compare and evaluate proposit
ion function that serves as the evaluation method.

After editing experiment.py based on these instruc-
tions, run controlled experiment.py executes
that code. The execution process continues up to a prede-
termined limit, with the code editor receiving any error mes-
sages and iteratively refining the code until it runs without
errors.

MLWorkflow
MLWorkflow Input Structure Our previous character-
ization of machine learning as a process requiring (1) a

learner and (2) data informs the input structure of MLWor
kflow: the class is designed to receive these two compo-
nents and execute the corresponding processes. The overall
process of preparing these two inputs in our current imple-
mentation, which will be explained in the following, is de-
picted in Fig. 4.

For simplicity, we constrained the learner to be goo
gle/gemma-2-2b-it in our current implementation.
While this is a limitation, it’s worth noting that previous
research, such as prompt2model (Viswanathan et al. 2023),
has demonstrated automatic acquisition of pre-trained mod-
els. In fact, prior research has already attempted to automate
machine learning research, including model acquisition, by
applying these technologies (Li et al. 2024b). By following
these previous studies, we could automate even the learner
specification process, which would be straightforward to in-
tegrate.

For data handling, we implemented an LLM-driven au-
tomatic data retrieval system to maintain high abstraction
levels in our experimental code templates, making them ap-
plicable to diverse research scenarios. Specifically, we im-
plemented a process where an LLM generates appropriate
queries for the Huggingface Hub based on the research idea,
followed by automatic search, retrieval, and formatting of
the data. This enables flexible research code generation that
adapts to any changes in research ideas, depending on your
research goals.

While current implementation of data retirieval is inspired
by prompt2model (Viswanathan et al. 2023), our version
is currently simpler for demonstration purposes. Expanding
it into a more flexible and sophisticated system, similar to
prompt2model, remains future work. The prompts used in
this process are shown in Fig. 24 in the Appendix.

MLWorkflow Class Implementation The implementa-
tion of MLWorkflow is written in mlworkflow.py, avail-
abe in the GitHub repository. Reflecting our understanding
of machine learning as a process of model training followed
by execution, MLWorkflow includes two primary methods:
train model and run model. These are called sequen-
tially when the call method is executed. The train
model method implements a standard, simple learning pro-
cedure that executes training when given training data. The
run modelmethod implements basic sample code where a
trained learner receives test data as input and generates out-
put. Notably, we made train model execution optional
since not all research interventions require training to vali-
date the effectiveness of their proposition, e.g. new prompt
techniques for zero-shot reasoning.

While we currently define only these two methods for
simplicity, this broad scope for overriding could be prob-
lematic, as the impact of the intervention may extend be-
yond the intended target. As our understanding and structur-
ing of machine learning processes improve, we could define
more granular and appropriate methods, enabling better con-
trol over the scope of interventions.

https://github.com/t46/ml-control-experiment/blob/main/run_controlled_experiment.py
https://github.com/t46/ml-control-experiment/blob/main/src/mlworkflow.py
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Figure 4: Data and Mode Setup Pipeline: In this study, we
used gemma-2-2b-it as the model, while data was ac-
quired automatically. First, we prompted the LLM to gener-
ate research ideas related to gemma-2-2b-it. Each re-
search idea was structured to include a research context,
which describes the research question and background infor-
mation, and a proposition idea, which outlines the approach
to addressing the question. Based on these research ideas,
we had the LLM generate queries to search for suitable data
on Hugging Face Hub, enabling automatic data acquisition.

Experiment Template Code

The experiment template code named experiment.py
contains three key components: (1) the NewMLWorkflow
implementation, (2) the evaluation method compare and
evaluate proposition, and (3) a main function that

executes MLWorkflow and NewMLWorkflow instances
and compares them using compare and evaluate p
roposition. This file, available in the GitHub reposi-
tory, serves as the executable script for our controlled ex-
periments and is the target for editing by the coder.

NewMLWorkflow Implementation NewMLWorkflow
is implemented in experiment.py as a derived class that
inherits from MLWorkflow, which is imported from a sep-
arate file. This structure maintains clear separation between
control and experimental implementations. The specific im-
plementation of this function is automatically generated by
our code editor as described earlier.

Evaluation Function Implementation Following our
conceptualization of evaluation methods as functions that
process workflow intermediate artifacts to produce evalua-
tion results, we equipped MLWorkflow with a log member
variable to store these artifacts. The compare and eva
luate proposition function takes these logs as input
and outputs evaluation results in a CSV format, with control
and experimental groups as rows and evaluation metrics as
columns. Again, the specific implementation of this function
is automatically generated by our code editor as described
earlier.

Demonstration
Quick Look at Prototype System’s Functioning
In the following, we will illustrate how the proposed CERI
framework works in practice, with demonstrating an exam-
ple.

Using the prompts described earlier, we had the system
to generate a research idea, full text of which is provided as
Figs 26 and 27 in the Appendix. These figures suggest that
the LLM identified gemma-2-2b-it’s difficulty in solv-
ing reasoning tasks as a problem. To address this, it appears
to have proposed new prompt engineering techniques, in-
cluding (1) structured prompting, (2) the incorporation of
logical operations, and (3) iterative prompting.

Based on this research idea, we instructed the LLM, us-
ing the aforementioned prompt, to retrieve appropriate data.

https://github.com/t46/ml-control-experiment/blob/main/src/experiment.py
https://github.com/t46/ml-control-experiment/blob/main/src/experiment.py


In this current study, we specifically restricted the search to
data in the text modality and instructed the system to retrieve
the dataset with the highest number of downloads among the
results found. As a result, the dataset livebench/reaso
ning was obtained, which appears to be a dataset designed
to measure the logical reasoning capabilities of LLMs. This
appears to be an appropriate dataset in light of the objective
of analyzing reasoning capabilities. These generated ideas
and retrieved dataset serve as the basis for experimental code
editing and subsequent execution of the controlled experi-
ment.

Based on the research idea and the retrieved dataset, we
had Aider based on claude-3-5-sonnet-20240620
edit the experimental code. The modified code is shown in
the Figs. 9 - 12. We confirmed that this code runs without
any errors.

Looking at this code, we can see that structural prompt-
ing and iterative prompting, as outlined in the research idea,
are implemented appropriately. However, the incorporation
of logical operators has not yet been fully realized. The
implementation of feedback mechanisms also remains lim-
ited. Regarding the evaluation metrics, the system assesses
whether the generated text includes terms such as “there-
fore” or “because” (Logical Consistency), which could be
considered a simple proxy for everyday “reasoning”. On the
other hand, since the fetched dataset includes YES/NO an-
swers to questions that require reasoning, it may be more ef-
fective to use these targets to evaluate reasoning capabilities.
Additionally, the evaluation of the number of steps (Reason-
ing Steps) seems biased toward metrics that favor the pro-
poser, as the prompt explicitly instructs the LLMs to respond
in a “step 1, step 2, . . . ” format.

The experimental result, saved as a CSV file, is shown
in Table 1. As can be seen from the high Logical Con-
sistency (percentage of sentences containing “therefore” or
“because”), the proposed method outperformed the baseline
in terms of the metrics set by the system in this sense.

ML Workflow Logical Consistency Reasoning Steps Inference Time (s)
Baseline 0.0 0.4333 172.2882
Proposal 0.0111 4.0444 886.7734

Table 1: Comparison of Baseline and Proposal

In summary, there is still significant room for improve-
ment in the quality of the code. A key challenge lies in
enhancing the system’s ability to identify and appropri-
ately implement suitable evaluation metrics for the proposed
method. On the positive side, the approach of isolating and
managing the base class to prevent unintended alterations
has been successful, and the system has managed to generate
error-free, executable code. Despite some quality issues, the
automation, including dataset integration and automatic gen-
eration of evaluation metrics, shows promising potential for
more flexible and autonomous execution of machine learn-
ing research.

As mentioned earlier, while there is extensive research on
idea generation, the field of flexible hypothesis verification
automation, or, experimental code generation is still in its
early stages. Building a body of research in this area will be

essential for advancing the field.

Complexity and Generalizability
At the beginning, we explained that template code has two
key aspects: code generalizability and code complexity. The
purpose of this conceptual paper is to propose ideas for de-
signing template code that achieves an optimal balance of
generalizability and complexity. Here, we report the find-
ings from a preliminary examination of the proposed tem-
plate code with respect to each of these aspects.

Code Generation with vs. without Templates To discuss
the potential of the current template to introduce complex-
ity in the generated code, we conducted a qualitative com-
parison between code generated without using any template
code and code generated using the current template.

As a baseline, we instructed the LLM to generate experi-
mental code without any template guidance. For this com-
parison, we used claude-3-5-sonnet-20240620,
the same model that serves as the base for the Aider, as base-
line code generation. The generated code is provided as Figs.
13 - 14 in the Appendix.

The generated baseline code appears well-written. How-
ever, because this baseline code was generated based on
minimal instructions to simply create experimental code, it
only includes a toy dataset rather than a dataset representa-
tive of real-world use. In contrast, as previously explained,
the template-guided code pre-defines dataset acquisition and
integration with machine learning, allowing for the use of
more practical datasets.

Furthermore, comparing the length of the code, the base-
line generated code is 89 lines, while the template-based
code extends to 202 lines, incorporating more complex and
detailed processes. This observation suggests that our tem-
plate code may aid in generating code that resembles the
complex code commonly used in human research more
closely than when no template code is used. While this ex-
periment has its limitations and does not offer conclusive
evidence of this effect, it does provide a tentative indication.

Flexibility in Adapting to Idea Changes To discuss the
potential flexibility of the proposed template compared to
more domain-specific templates, we compared the code gen-
eration results using a domain-specific template with those
using the proposed template. Specific templates tailored to
narrow research contexts is expected to hinder flexibility
when research topics, objectives, or ideas shift. In such
cases, the template may fail to function effectively or may
even introduce irrelevant noise that negatively impacts the
generated code.

Specifically, we used a template code for diffusion model
research from a prior study (Lu et al. 2024) as an example
baseline and compared the edited code generated using the
proposed template code and the baseline code for the previ-
ously mentioned dataset, research idea, and model.

The code generated with the specific prompt is presented
as Figs. 15 - 22 in the Appendix. The generated code re-
veals a clear separation between the diffusion-related code
segments and the portions implementing the actual method-
ology. This indicates that the diffusion template is, as ex-



pected, entirely non-functional in this context. In summary,
it seems that the diffusion experiment template may not have
effectively contributed to the current context, aligning with
our hypothesis that highly specific template designs have in-
herent limitations. Although the template’s support might be
debatable, it hints at the potential limitations associated with
overly specialized design approaches.

This stands in contrast to our proposed approach, where
the generated code depends on the template code. This ob-
servation highlights the possibility that increasing the level
of abstraction in template code may enhance flexibility, al-
lowing for broader applicability across different research
contexts.

Conclusion
This conceptual paper introduces an idea of experiment tem-
plate code design for automating machine learning exper-
iments. Towards a more flexible approach to experimen-
tal automation, We propose to represent machine learning
process as abstract workflow and controlled experiments as
comparisons between base and derived classes reflecting the
workflows.

The goal of this conceptual paper is to propose ideas
for designing code templates that facilitate the automation
of hypothesis validation, particularly in the relatively less-
explored context of validation within the scientific process.
Our approach is preliminary and has lots of limitations, and
we do not claim it to be the optimal solution. Instead, we
hope that this work serves as a catalyst for further innova-
tion, inspiring alternative approaches and improvements in
the field.
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import torch

import torch.optim as optim

from torch.utils.data import DataLoader

from tqdm import tqdm

import datasets

from transformers import get_linear_schedule_with_warmup

from tqdm import tqdm

def collate_fn(batch):

input_ids = torch.tensor([item[’input_ids’] for item in batch])

attention_mask = torch.tensor([item[’attention_mask’] for item in batch])

targets = torch.tensor([item[’targets’] for item in batch])

return {

’input_ids’: input_ids,

’attention_mask’: attention_mask,

’targets’: targets

}

class MLWorkflow:

def __init__(self, model, tokenizer, device, tokenize_dataset):

self.tokenizer = tokenizer

self.device = device

self.model = model.to(device)

self.tokenize_dataset = tokenize_dataset

self.log = {

"train_losses": [],

"eval_losses": [],

"train_time": None,

"inference_time": None,

"generated_outputs": [],

"model_parameters": None,

}

def __call__(self, dataset: datasets.Dataset, is_train_included=False):

if is_train_included:

self.model, self.tokenizer = self.train_model(dataset["train"])

log = self.run_model(dataset["test"])

return log

def train_model(self, training_datasets: list[datasets.Dataset] | None = None):

import time

start_time = time.time()

train_dataset = self.tokenize_dataset(training_datasets, self.tokenizer,

self.tokenizer.model_max_length)

epochs = 3

train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True,

collate_fn=collate_fn)

optimizer_name = "AdamW"

optimizer = getattr(optim, optimizer_name)(self.model.parameters(),

lr=5e-5, weight_decay=0.01)

total_steps = len(train_loader) * epochs

scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0,

num_training_steps=total_steps)

loss_fn = torch.nn.CrossEntropyLoss()

for epoch in tqdm(range(epochs), desc="Training"):

Figure 5: MLWorkflow Class Implementation (1/2)



self.model.train()

total_loss = 0

for batch in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}"):

input_ids = batch[’input_ids’].to(self.device)

attention_mask = batch[’attention_mask’].to(self.device)

targets = batch[’targets’].to(self.device)

outputs = self.model(input_ids, attention_mask=attention_mask, targets=targets)

logits = outputs.logits

loss = loss_fn(logits.view(-1, logits.size(-1)), targets.view(-1))

total_loss += loss.item()

loss.backward()

torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)

optimizer.step()

scheduler.step()

optimizer.zero_grad()

avg_train_loss = total_loss / len(train_loader)

print(f"Epoch {epoch + 1}/{epochs}, Average train loss: {avg_train_loss:.4f}")

self.log["train_losses"].append(avg_train_loss)

self.log["train_time"] = time.time() - start_time

self.log["model_parameters"] = self.model.state_dict()

self.model.save_pretrained("artifacts")

self.tokenizer.save_pretrained("artifacts")

return self.model, self.tokenizer

def run_model(self, test_dataset: datasets.Dataset):

import time

start_time = time.time()

test_dataset = self.tokenize_dataset(test_dataset, self.tokenizer,

self.tokenizer.model_max_length)

test_loader = DataLoader(test_dataset, batch_size=8, shuffle=False,

collate_fn=collate_fn)

all_outputs = []

self.model.eval()

with torch.no_grad():

for batch in tqdm(test_loader, desc="Evaluating"):

input_ids = batch[’input_ids’].to(self.device)

outputs = self.model.generate(

input_ids,

attention_mask=batch[’attention_mask’],

max_new_tokens=50,

num_return_sequences=1,

do_sample=True,

pad_token_id=self.tokenizer.pad_token_id

)

generated_texts = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)

all_outputs.extend(generated_texts)

self.log["inference_time"] = time.time() - start_time

self.log["generated_outputs"] = all_outputs

return self.log

Figure 6: MLWorkflow Class Implementation (2/2)



"""

Given the dataset, model, and tokenizer, we execute both the MLWorkflow and the modified

NewMLWorkflow, and compare and evaluate the results using compare_and_evaluate_proposition.

"""

import torch

import torch.optim as optim

from torch.utils.data import DataLoader

from tqdm import tqdm

import datasets

from transformers import get_linear_schedule_with_warmup

from mlworkflow import MLWorkflow

import csv

def collate_fn(batch):

input_ids = torch.tensor([item[’input_ids’] for item in batch])

attention_mask = torch.tensor([item[’attention_mask’] for item in batch])

targets = torch.tensor([item[’targets’] for item in batch])

return {

’input_ids’: input_ids,

’attention_mask’: attention_mask,

’targets’: targets

}

class NewMLWorkflow(MLWorkflow):

def __init__(self, model, tokenizer, device, tokenize_dataset):

super().__init__(model, tokenizer, device, tokenize_dataset)

# implement the proposed idea in override methods of MLWorkflow

...

def compare_and_evaluate_proposition(log, new_log, test_dataset):

# implement the way to compare the log of MLWorkflow and NewMLWorkflow to evaluate the

# effectiveness of the proposed method

...

results = {

"baseline": ...,

"proposal": ...,

}

with open("results.csv", "w") as f:

writer = csv.writer(f)

writer.writerow(["mlworkflow", ...])

for mlworkflow in results:

writer.writerow([mlworkflow, ...])

def tokenize_dataset(dataset: datasets.Dataset, tokenizer,

tokenizer_max_length: int) -> datasets.Dataset:

def tokenize_function(examples):

# implement the tokenize_function to convert the dataset into a format suitable for

# the current research context

tokenized_inputs = tokenizer(examples[...], truncation=True, padding="max_length",

max_length=tokenizer_max_length)

tokenized_targets = tokenizer(examples[...], truncation=True, padding="max_length",

max_length=tokenizer_max_length)

tokenized_inputs["targets"] = tokenized_targets["input_ids"]

return tokenized_inputs

tokenized_dataset = dataset.map(tokenize_function, batched=True,

remove_columns=dataset.column_names)

Figure 7: Experiment Template Code (1/2)



return tokenized_dataset

if __name__ == "__main__":

import sys

import os

sys.path.append(os.path.dirname(os.path.abspath(__file__)))

from model_preparation import prepare_model

from datasets import load_from_disk

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

workspace_directory = os.path.dirname(os.path.abspath(__file__))

dataset = load_from_disk(os.path.join(workspace_directory, "dataset"))

model, tokenizer = prepare_model("google/gemma-2-2b-it", is_pretrained=True)

mlworkflow = MLWorkflow(model, tokenizer, device, tokenize_dataset)

log = mlworkflow(dataset, is_train_included=False)

new_mlworkflow = NewMLWorkflow(model, tokenizer, device, tokenize_dataset)

new_log = new_mlworkflow(dataset, is_train_included=False)

compare_and_evaluate_proposition(log, new_log, dataset["test"])

print("Finished!!")

Figure 8: Experiment Template Code (2/2)



"""

Given the dataset, model, and tokenizer, we execute both the MLWorkflow and the modified

NewMLWorkflow, and compare and evaluate the results using compare_and_evaluate_proposition.

"""

import torch

import torch.optim as optim

from torch.utils.data import DataLoader

from tqdm import tqdm

import datasets

from transformers import get_linear_schedule_with_warmup

from mlworkflow import MLWorkflow

import csv

def collate_fn(batch):

input_ids = torch.tensor([item[’input_ids’] for item in batch])

attention_mask = torch.tensor([item[’attention_mask’] for item in batch])

targets = torch.tensor([item[’targets’] for item in batch])

return {

’input_ids’: input_ids,

’attention_mask’: attention_mask,

’targets’: targets

}

class NewMLWorkflow(MLWorkflow):

def __init__(self, model, tokenizer, device, tokenize_dataset):

super().__init__(model, tokenizer, device, tokenize_dataset)

self.structured_prompt_template = """

Given the following question:

{question}

Please reason step-by-step to answer the question:

Step 1: {step1}

Step 2: {step2}

Step 3: {step3}

Final answer:

"""

def run_model(self, test_dataset: datasets.Dataset):

import time

start_time = time.time()

all_outputs = []

self.model.eval()

with torch.no_grad():

for item in tqdm(test_dataset, desc="Evaluating"):

if ’turns’ not in item:

raise ValueError(f"Required ’turns’ column not found. Available columns:

{item.keys()}")

question = item[’turns’][0][0] # Extract the question from the ’turns’ column

# Iterative prompting

for i in range(3): # 3 iterations

prompt = self.structured_prompt_template.format(

question=question,

step1="" if i == 0 else all_outputs[-1].split("\n")[0],

step2="" if i < 1 else all_outputs[-1].split("\n")[1],

step3="" if i < 2 else all_outputs[-1].split("\n")[2]

)

Figure 9: Generated Experiment Code (1/4)



inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)

outputs = self.model.generate(

**inputs,

max_new_tokens=100,

num_return_sequences=1,

do_sample=True,

temperature=0.7,

pad_token_id=self.tokenizer.pad_token_id

)

generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)

all_outputs.append(generated_text)

self.log["inference_time"] = time.time() - start_time

self.log["generated_outputs"] = all_outputs

return self.log

def compare_and_evaluate_proposition(baseline_log, new_log, test_dataset):

baseline_outputs = baseline_log["generated_outputs"]

new_outputs = new_log["generated_outputs"]

# Evaluate logical consistency

baseline_consistency = evaluate_logical_consistency(baseline_outputs)

new_consistency = evaluate_logical_consistency(new_outputs)

# Evaluate step-by-step reasoning

baseline_steps = count_reasoning_steps(baseline_outputs)

new_steps = count_reasoning_steps(new_outputs)

# Evaluate inference time

baseline_time = baseline_log["inference_time"]

new_time = new_log["inference_time"]

results = {

"baseline": {

"logical_consistency": baseline_consistency,

"reasoning_steps": baseline_steps,

"inference_time": baseline_time

},

"proposal": {

"logical_consistency": new_consistency,

"reasoning_steps": new_steps,

"inference_time": new_time

}

}

print("Evaluation Results:")

print(f"Baseline Logical Consistency: {baseline_consistency:.4f}")

print(f"Proposal Logical Consistency: {new_consistency:.4f}")

if baseline_consistency > 0:

consistency_improvement = \

(new_consistency - baseline_consistency) / baseline_consistency * 100

print(f"Logical Consistency Improvement: {consistency_improvement:.2f}%")

else:

print("Logical Consistency Improvement: Cannot calculate (baseline is zero)")

print(f"Baseline Reasoning Steps: {baseline_steps:.2f}")

print(f"Proposal Reasoning Steps: {new_steps:.2f}")

if baseline_steps > 0:

steps_improvement = (new_steps - baseline_steps) / baseline_steps * 100

print(f"Reasoning Steps Improvement: {steps_improvement:.2f}%")

Figure 10: Generated Experiment Code (2/4)



else:

print("Reasoning Steps Improvement: Cannot calculate (baseline is zero)")

time_change = (new_time - baseline_time) / baseline_time * 100

print(f"Inference Time Change: {time_change:.2f}%")

with open("results.csv", "w") as f:

writer = csv.writer(f)

writer.writerow(["mlworkflow", "logical_consistency", "reasoning_steps", "inference_time"])

for mlworkflow, data in results.items():

writer.writerow([mlworkflow, data["logical_consistency"], data["reasoning_steps"],

data["inference_time"]])

return results

def evaluate_logical_consistency(outputs):

# Implement a simple heuristic for logical consistency

consistent_count = \

sum(1 for output in outputs if "therefore" in output.lower() and "because" in output.lower())

return consistent_count / len(outputs)

def count_reasoning_steps(outputs):

# Count the average number of reasoning steps

step_counts = [output.count("Step") for output in outputs]

return sum(step_counts) / len(step_counts)

def tokenize_dataset(dataset: datasets.Dataset, tokenizer,

tokenizer_max_length: int) -> datasets.Dataset:

def tokenize_function(examples):

# Print the column names and first few entries to debug

print("Dataset columns:", examples.keys())

for key in examples.keys():

print(f"First entry of ’{key}’:", examples[key][0])

# Use the ’turns’ column which contains the question

if ’turns’ not in examples:

raise ValueError(

f"Required ’turns’ column not found. Available columns: {examples.keys()}")

# Extract the question from the ’turns’ column

questions = [turn[0] for turn in examples[’turns’]]

# Use ’ground_truth’ as targets

if ’ground_truth’ not in examples:

raise ValueError(

f"Required ’ground_truth’ column not found. Available columns: {examples.keys()}")

targets = examples[’ground_truth’]

tokenized_inputs = tokenizer(questions, truncation=True, padding="max_length", max_length=tokenizer_max_length)

tokenized_targets = tokenizer(targets, truncation=True, padding="max_length", max_length=tokenizer_max_length)

tokenized_inputs["targets"] = tokenized_targets["input_ids"]

return tokenized_inputs

tokenized_dataset = dataset.map(tokenize_function,

batched=True, remove_columns=dataset.column_names)

return tokenized_dataset

if __name__ == "__main__":

import sys
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import os

sys.path.append(os.path.dirname(os.path.abspath(__file__)))

from model_preparation import prepare_model

from datasets import load_from_disk

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

workspace_directory = os.path.dirname(os.path.abspath(__file__))

dataset = load_from_disk(os.path.join(workspace_directory, "dataset"))

# Print dataset info

print("Dataset info:")

print(dataset)

print("Train dataset columns:", dataset["train"].column_names)

print("Test dataset columns:", dataset["test"].column_names)

model, tokenizer = prepare_model("google/gemma-2-2b-it", is_pretrained=True)

mlworkflow = MLWorkflow(model, tokenizer, device, tokenize_dataset)

log = mlworkflow(dataset, is_train_included=False)

new_mlworkflow = NewMLWorkflow(model, tokenizer, device, tokenize_dataset)

new_log = new_mlworkflow(dataset, is_train_included=False)

compare_and_evaluate_proposition(log, new_log, dataset["test"])

print("Finished!!")
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import torch

from transformers import AutoTokenizer, AutoModelForCausalLM

import pandas as pd

from tqdm import tqdm

# Load the model and tokenizer

model_name = "google/gemma-2-2b-it"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name)

# Define logical reasoning tasks

tasks = [

{

"premise": "Tutti i gatti sono mammiferi. Whiskers è un gatto.",

"question": "Whiskers è un mammifero?",

"answer": "Sı̀"

},

{

"premise": "Se piove, l’erba è bagnata. Oggi l’erba non è bagnata.",

"question": "Ha piovuto oggi?",

"answer": "No"

},

# Add more tasks here

]

# Define prompting strategies

strategies = {

"baseline": lambda task: f"{task[’premise’]} {task[’question’]}",

"structured": lambda task: f"Premessa: {task[’premise’]}\nDomanda: \

{task[’question’]}\nRisposta:",

"logical_operators": lambda task: f"SE ({task[’premise’]}) ALLORA \

{task[’question’]} (Rispondi Sı̀ o No)",

"iterative": lambda task: f"Passo 1: Comprendi la premessa: \

{task[’premise’]}\nPasso 2: Analizza la domanda: {task[’question’]}\nPasso 3: \

Deduci logicamente la risposta:\n"

}

def generate_response(prompt):

inputs = tokenizer(prompt, return_tensors="pt")

with torch.no_grad():

outputs = model.generate(**inputs, max_new_tokens=50)

return tokenizer.decode(outputs[0], skip_special_tokens=True)

results = []

for task in tqdm(tasks, desc="Processing tasks"):

for strategy_name, strategy_func in strategies.items():

prompt = strategy_func(task)

response = generate_response(prompt)

# Simple accuracy check (you might need a more sophisticated evaluation)

correct = task[’answer’].lower() in response.lower()

results.append({

"Task": task[’question’],

"Strategy": strategy_name,

"Prompt": prompt,

"Response": response,

"Correct": correct

})
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# Convert results to DataFrame and save

df_results = pd.DataFrame(results)

df_results.to_csv("logical_reasoning_results.csv", index=False)

# Calculate and print summary statistics

summary = df_results.groupby("Strategy")["Correct"].mean()

print("Accuracy by strategy:")

print(summary)

# Visualize results

import matplotlib.pyplot as plt

summary.plot(kind="bar")

plt.title("Accuracy of Logical Reasoning by Prompting Strategy")

plt.ylabel("Accuracy")

plt.tight_layout()

plt.savefig("strategy_comparison.png")

plt.close()

# Analyze response lengths

df_results["Response_Length"] = df_results["Response"].str.len()

length_summary = df_results.groupby("Strategy")["Response_Length"].mean()

length_summary.plot(kind="bar")

plt.title("Average Response Length by Prompting Strategy")

plt.ylabel("Characters")

plt.tight_layout()

plt.savefig("response_length_comparison.png")
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# This file trains a DDPM diffusion model on 2D datasets.

import argparse

import json

import os.path as osp

import pathlib

import pickle

import time

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.utils.data import DataLoader

from torch.optim.lr_scheduler import CosineAnnealingLR

from tqdm.auto import tqdm

from transformers import AutoTokenizer, AutoModelForCausalLM

from datasets import load_dataset

import datasets

try:

import npeet.entropy_estimators as ee

except ImportError:

print("Warning: npeet not installed. KL divergence estimation will not be available.")

ee = None

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the gemma-2-2b-it model and tokenizer

model_name = "google/gemma-2-2b-it"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name).to(device)

# Load the livebench/reasoning dataset

dataset = load_dataset("livebench/reasoning")

def structured_prompt(question):

"""

Create a structured prompt using a decision tree format.

"""

return f"""

Given the following question, let’s approach it step-by-step using a decision tree:

Question: {question}

1. Identify the key elements:

- [Element 1]

- [Element 2]

- ...

2. Consider possible relationships:

IF [Condition 1] THEN

[Conclusion 1]

ELSE IF [Condition 2] THEN

[Conclusion 2]

ELSE

[Conclusion 3]

3. Apply logical operators:

(Element 1 AND Element 2) OR (NOT Element 3)
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4. Final answer:

Based on the above analysis, the answer is: [Your answer here]

Please fill in the brackets and provide a step-by-step reasoning process.

"""

def logical_operator_prompt(question):

"""

Create a prompt that explicitly uses logical operators.

"""

return f"""

Let’s solve this problem using logical operators:

Question: {question}

1. Define variables:

A = [Define A]

B = [Define B]

C = [Define C]

2. Apply logical operations:

Result = (A AND B) OR (NOT C)

3. Interpret the result:

IF Result is TRUE THEN

[Conclusion 1]

ELSE

[Conclusion 2]

4. Final answer:

Therefore, the answer is: [Your answer here]

Please fill in the brackets and show your reasoning using the logical operators.

"""

def iterative_prompting(question, model, tokenizer, max_iterations=3):

"""

Perform iterative prompting to refine the answer.

"""

current_prompt = f"Question: {question}\n\nInitial thoughts:"

for i in range(max_iterations):

inputs = tokenizer(current_prompt, return_tensors="pt").to(device)

outputs = model.generate(**inputs, max_new_tokens=100)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)

current_prompt += f"\n\nIteration {i+1} refinement:\n{response}\n\nCan \

you improve on this reasoning?"

return current_prompt

def evaluate_reasoning(model, tokenizer, dataset, num_samples=100):

correct = 0

total = 0

# Get the first available split in the dataset

split = next(iter(dataset.keys()))

# Print the structure of the first sample

first_sample = next(iter(dataset[split]))

print("Sample structure:", first_sample.keys())
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for sample in tqdm(list(dataset[split])[:num_samples]):

# Adjust these lines based on the actual structure of the sample

question = sample.get(’input’, ’’) # Assuming ’input’ contains the question

ground_truth = sample.get(’target’, ’’) # Assuming ’target’ contains the ground truth

# Apply different prompting techniques

structured_input = structured_prompt(question)

logical_input = logical_operator_prompt(question)

iterative_input = iterative_prompting(question, model, tokenizer)

# Combine prompts

combined_prompt = f"{structured_input}\n\n{logical_input}\n\n{iterative_input}\n\nFinal \

answer:"

inputs = tokenizer(combined_prompt, return_tensors="pt").to(device)

outputs = model.generate(**inputs, max_new_tokens=50)

predicted_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)

# Simple exact match evaluation (can be improved)

if str(ground_truth) in predicted_answer:

correct += 1

total += 1

accuracy = correct / total

return accuracy

if __name__ == "__main__":

parser = argparse.ArgumentParser()

parser.add_argument("--num_samples", type=int, default=100)

parser.add_argument("--out_dir", type=str, default="run_0")

config = parser.parse_args()

pathlib.Path(config.out_dir).mkdir(parents=True, exist_ok=True)

accuracy = evaluate_reasoning(model, tokenizer, dataset, num_samples=config.num_samples)

results = {

"accuracy": accuracy,

"num_samples": config.num_samples,

}

with open(osp.join(config.out_dir, "results.json"), "w") as f:

json.dump(results, f)

print(f"Evaluation complete. Accuracy: {accuracy:.2f}")

class SinusoidalEmbedding(nn.Module):

def __init__(self, dim: int, scale: float = 1.0):

super().__init__()

self.dim = dim

self.scale = scale

def forward(self, x: torch.Tensor):

x = x * self.scale

half_dim = self.dim // 2

emb = torch.log(torch.Tensor([10000.0])) / (half_dim - 1)

emb = torch.exp(-emb * torch.arange(half_dim)).to(device)

emb = x.unsqueeze(-1) * emb.unsqueeze(0)

emb = torch.cat((torch.sin(emb), torch.cos(emb)), dim=-1)
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return emb

class ResidualBlock(nn.Module):

def __init__(self, width: int):

super().__init__()

self.ff = nn.Linear(width, width)

self.act = nn.ReLU()

def forward(self, x: torch.Tensor):

return x + self.ff(self.act(x))

class MLPDenoiser(nn.Module):

def __init__(

self,

embedding_dim: int = 128,

hidden_dim: int = 256,

hidden_layers: int = 3,

):

super().__init__()

self.time_mlp = SinusoidalEmbedding(embedding_dim)

# sinusoidal embeddings help capture high-frequency patterns for low-dim data

self.input_mlp1 = SinusoidalEmbedding(embedding_dim, scale=25.0)

self.input_mlp2 = SinusoidalEmbedding(embedding_dim, scale=25.0)

self.network = nn.Sequential(

nn.Linear(embedding_dim * 3, hidden_dim),

*[ResidualBlock(hidden_dim) for _ in range(hidden_layers)],

nn.ReLU(),

nn.Linear(hidden_dim, 2),

)

def forward(self, x, t):

x1_emb = self.input_mlp1(x[:, 0])

x2_emb = self.input_mlp2(x[:, 1])

t_emb = self.time_mlp(t)

emb = torch.cat([x1_emb, x2_emb, t_emb], dim=-1)

return self.network(emb)

class NoiseScheduler():

def __init__(

self,

num_timesteps=1000,

beta_start=0.0001,

beta_end=0.02,

beta_schedule="linear",

):

self.num_timesteps = num_timesteps

if beta_schedule == "linear":

self.betas = torch.linspace(

beta_start, beta_end, num_timesteps, dtype=torch.float32).to(device)

elif beta_schedule == "quadratic":

self.betas = (torch.linspace(

beta_start ** 0.5, beta_end ** 0.5,

num_timesteps, dtype=torch.float32) ** 2).to(device)

else:

raise ValueError(f"Unknown beta schedule: {beta_schedule}")

self.alphas = 1.0 - self.betas
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self.alphas_cumprod = torch.cumprod(self.alphas, axis=0).to(device)

self.alphas_cumprod_prev = F.pad(self.alphas_cumprod[:-1], (1, 0), value=1.).to(device)

# required for self.add_noise

self.sqrt_alphas_cumprod = (self.alphas_cumprod ** 0.5).to(device)

self.sqrt_one_minus_alphas_cumprod = ((1 - self.alphas_cumprod) ** 0.5).to(device)

# required for reconstruct_x0

self.sqrt_inv_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod).to(device)

self.sqrt_inv_alphas_cumprod_minus_one = torch.sqrt(

1 / self.alphas_cumprod - 1).to(device)

# required for q_posterior

self.posterior_mean_coef1 = \

self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1. - self.alphas_cumprod).to(

device)

self.posterior_mean_coef2 = ((1. - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (

1. - self.alphas_cumprod)).to(device)

def reconstruct_x0(self, x_t, t, noise):

s1 = self.sqrt_inv_alphas_cumprod[t]

s2 = self.sqrt_inv_alphas_cumprod_minus_one[t]

s1 = s1.reshape(-1, 1)

s2 = s2.reshape(-1, 1)

return s1 * x_t - s2 * noise

def q_posterior(self, x_0, x_t, t):

s1 = self.posterior_mean_coef1[t]

s2 = self.posterior_mean_coef2[t]

s1 = s1.reshape(-1, 1)

s2 = s2.reshape(-1, 1)

mu = s1 * x_0 + s2 * x_t

return mu

def get_variance(self, t):

if t == 0:

return 0

variance = self.betas[t] * \

(1. - self.alphas_cumprod_prev[t]) / (1. - self.alphas_cumprod[t])

variance = variance.clip(1e-20)

return variance

def step(self, model_output, timestep, sample):

t = timestep

pred_original_sample = self.reconstruct_x0(sample, t, model_output)

pred_prev_sample = self.q_posterior(pred_original_sample, sample, t)

variance = 0

if t > 0:

noise = torch.randn_like(model_output)

variance = (self.get_variance(t) ** 0.5) * noise

pred_prev_sample = pred_prev_sample + variance

return pred_prev_sample

def add_noise(self, x_start, x_noise, timesteps):

s1 = self.sqrt_alphas_cumprod[timesteps]

s2 = self.sqrt_one_minus_alphas_cumprod[timesteps]
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s1 = s1.reshape(-1, 1)

s2 = s2.reshape(-1, 1)

return s1 * x_start + s2 * x_noise

def __len__(self):

return self.num_timesteps

if __name__ == "__main__":

parser = argparse.ArgumentParser()

parser.add_argument("--train_batch_size", type=int, default=256)

parser.add_argument("--eval_batch_size", type=int, default=10000)

parser.add_argument("--learning_rate", type=float, default=3e-4)

parser.add_argument("--num_timesteps", type=int, default=100)

parser.add_argument("--num_train_steps", type=int, default=10000)

parser.add_argument("--beta_schedule", type=str, default="linear",

choices=["linear", "quadratic"])

parser.add_argument("--embedding_dim", type=int, default=128)

parser.add_argument("--hidden_size", type=int, default=256)

parser.add_argument("--hidden_layers", type=int, default=3)

parser.add_argument("--out_dir", type=str, default="run_0")

config = parser.parse_args()

final_infos = {}

all_results = {}

pathlib.Path(config.out_dir).mkdir(parents=True, exist_ok=True)

for dataset_name in ["circle", "dino", "line", "moons"]:

dataset = getattr(datasets, dataset_name)(n=100000)

dataloader = DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)

model = MLPDenoiser(

embedding_dim=config.embedding_dim,

hidden_dim=config.hidden_size,

hidden_layers=config.hidden_layers,

).to(device)

# ema_model removed

noise_scheduler = NoiseScheduler(num_timesteps=config.num_timesteps,

beta_schedule=config.beta_schedule)

optimizer = torch.optim.AdamW(

model.parameters(),

lr=config.learning_rate,

)

scheduler = CosineAnnealingLR(optimizer, T_max=config.num_train_steps)

train_losses = []

print("Training model...")

model.train()

global_step = 0

progress_bar = tqdm(total=config.num_train_steps, mininterval=10, disable=True)

progress_bar.set_description("Training")

start_time = time.time()

while global_step < config.num_train_steps:

for batch in dataloader:

if global_step >= config.num_train_steps:

break
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batch = batch[0].to(device)

noise = torch.randn(batch.shape).to(device)

timesteps = torch.randint(

0, noise_scheduler.num_timesteps, (batch.shape[0],)

).long().to(device)

noisy = noise_scheduler.add_noise(batch, noise, timesteps)

noise_pred = model(noisy, timesteps)

loss = F.mse_loss(noise_pred, noise)

loss.backward()

nn.utils.clip_grad_norm_(model.parameters(), 0.5)

optimizer.step()

optimizer.zero_grad()

# ema_model update removed

scheduler.step()

progress_bar.update(1)

logs = {"loss": loss.detach().item()}

train_losses.append(loss.detach().item())

progress_bar.set_postfix(**logs)

global_step += 1

progress_bar.close()

end_time = time.time()

training_time = end_time - start_time

# Eval loss

model.eval()

eval_losses = []

for batch in dataloader:

batch = batch[0].to(device)

noise = torch.randn(batch.shape).to(device)

timesteps = torch.randint(

0, noise_scheduler.num_timesteps, (batch.shape[0],)

).long().to(device)

noisy = noise_scheduler.add_noise(batch, noise, timesteps)

noise_pred = model(noisy, timesteps)

loss = F.mse_loss(noise_pred, noise)

eval_losses.append(loss.detach().item())

eval_loss = np.mean(eval_losses)

# Eval image saving

model.eval()

sample = torch.randn(config.eval_batch_size, 2).to(device)

timesteps = list(range(len(noise_scheduler)))[::-1]

inference_start_time = time.time()

for t in timesteps:

t = torch.from_numpy(np.repeat(t, config.eval_batch_size)).long().to(device)

with torch.no_grad():

residual = model(sample, t)

sample = noise_scheduler.step(residual, t[0], sample)

sample = sample.cpu().numpy()

inference_end_time = time.time()

inference_time = inference_end_time - inference_start_time

# Eval estimated KL

real_data = dataset.tensors[0].numpy()

kl_divergence = ee.kldiv(real_data, sample, k=5) if ee is not None else None

final_infos[dataset_name] = {
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"means": {

"training_time": training_time,

"eval_loss": eval_loss,

"inference_time": inference_time,

"kl_divergence": kl_divergence,

}

}

all_results[dataset_name] = {

"train_losses": train_losses,

"images": sample,

}

with open(osp.join(config.out_dir, "final_info.json"), "w") as f:

json.dump(final_infos, f)

with open(osp.join(config.out_dir, "all_results.pkl"), "wb") as f:

pickle.dump(all_results, f)
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 Research Context: {research_context}
 Proposition Idea: {proposition_idea}

 Prerequisite:
 Model:
 The base model used in this experiment is google/gemma-2-2b-it.

 Dataset:
 {dataset_name}
 {dataset}

 mlworkflow.py:
 {mlworkflow_py}

 Code Explanation:
 mlworkflow.py represents the workflow of a machine learning research that verifies the effectiveness of the proposed method
through comparative experiments. Specifically, given the dataset, model, and tokenizer, it executes MLWorkflow and
NewMLWorkflow (which is a modified version of MLWorkflow), and then compares and evaluates their results using
compare_and_evaluate_proposition
 MLWorkflow represents a typical machine learning workflow where the model is trained on training data and then executed
on test data. 
 
 experiment.py represents the comparative experiment that validates the effectiveness of the proposed method through the
comparison between MLWorkflow and NewMLWorkflow.
 NewMLWorkflow inherits from MLWorkflow and modifies the workflow by overriding train_model, run_model, or both. 
 Researcher implements the proposed idea in NewMLWorkflow and the proposition idea and related parts are the only
differences between MLWorkflow and NewMLWorkflow.
 This code embodies the idea that "machine learning research that validates a proposal through comparative experiments is
an endeavor to determine whether adding a new proposal (NewMLWorkflow) to an MLWorkflow that generates certain
output from data yields better results in an expected sense."

 Task Description:
 Please edit experiment.py to implement the Proposition Idea and design experiments to validate its feasibility based on the
Research Context.
 Your task is to complete the experimental code by editing experiment.py.
 Please edit the following parts, but do not change any other parts:

 NewMLWorkflow
 To implement the Proposition Idea and design experiments to validate its effectiveness, override one or all methods of
MLWorkflow. For example, if you're proposing a new Optimizer, implement the new optimizer and use it in train_model
instead of the existing optimizer. If you're proposing a new neural architecture, implement the new architecture in the
Hugging Face format and assign it in the part where self.model = model.to(device) is set in the __init__ method. If you're
proposing a prompt technique to improve the zero-shot inference performance of a pre-trained model, implement the prompt
technique in the run_model part. In this way, first consider which part of the machine learning workflow the Proposition Idea
is addressing, and then implement NewMLWorkflow to properly implement and experiment with the proposal. When doing
so, make sure to define all the information needed to see if the proposal is superior to existing methods in the expected sense
using self.log.

 compare_and_evaluate_proposition
 Implement evaluation criteria to examine how and in what sense the Proposition Idea is superior to existing methods. For
example, if the proposed method is expected to predict better than existing methods, you might compare if the accuracy is
higher. Or, if you're proposing an optimization method that's expected to converge faster, you might compare the number of
steps it took before the loss reached a certain value. Also, if you're proposing a method with superior interpretability, you
might define some metric that shows that the internal representation of the model is more interpretable in some sense and
compare that. In this way, consider in what sense the Proposition Idea is expected to be superior to existing methods in
relation to the Research Context, and implement evaluation metrics that can compare this.

 tokenize_dataset
 Implement the tokenize_dataset function to convert the dataset into a format suitable for the current research context. Input
and target should be chosen appropriately based on the current research context and dataset structure.
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 Research Context: {research_context}
 Proposition Idea: {proposition_idea}

 Your final goal is to implement a Proposition Idea and design experiments to validate its feasibility based on the Research
Context. To achieve this, generate search query for obtaining text datasets from HuggingFace using an LLM. This prompt
should explicitly state the purpose and objectives of the research, what the Proposition Idea is, and which datasets should be
retrieved to validate it.

 query will be used as follows:
 from huggingface_hub import HfApi
 api = HfApi()
 results = list(api.list_datasets(search=query, sort="downloads", direction=-1, limit=max_results))

 Note that query input to `search` is a string that will be contained in the returned datasets.

 The query should be a word that is likely included in the desired dataset name but unlikely to be found in unrelated dataset
names. 
 It should primarily consist of terms related to machine learning tasks or concepts. In particular, it should include words
associated with the operations required for validating the method you proposed with the dataset or task.

 First, think about the machine learning **task** that to be used in the experiment. Then, generate a query that is likely to be
included in the dataset name to be used for the task.

 Generate only one query and the query should be single word contined in the text dataset name.

 <query>
 "..."
 </query>
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 There is a powerful yet small-scale local LLM called google/gemma-2-2b-it. You will now conduct research using this
model.
 The research could propose optimization methods, new neural architectures, new evaluation methods, or new prompting
techniques, or any other ideas.
 Please generate the following two items:
 research_context: This describes the research problem and its background.
 proposition_idea: This describes the proposed idea to solve the problem. Please focus on the single most interesting idea.

 Please keep the proposed ideas as simple as possible and ensure they have a high likelihood of feasibility.

 <research_context>
 ...
 </research_context>

 <proposition_idea>
 ...
 </proposition_idea>

Figure 25: Prompt for Generating Research Idea

google/gemma-2-2b-it is a powerful yet small-scale LLM, specifically designed for Italian language tasks. While its
performance is impressive for its size, LLMs in general often struggle with reasoning and logical deduction tasks. This can be
attributed to their reliance on statistical patterns in the training data rather than explicit logical rules. Furthermore, evaluating
the performance of smaller LLMs like gemma-2-2b-it on complex reasoning tasks can be challenging due to the lack of
widely accepted benchmarks tailored for their scale.

Figure 26: Research context generated by LLM

To address these challenges, we propose exploring **prompt engineering techniques specifically designed to guide gemma-
2-2b-it towards better logical reasoning**. This could involve: * **Introducing structured input formats**: Instead of relying
solely on free-form text, experiment with prompting gemma-2-2b-it using structured data like knowledge graphs or decision
trees. * **Incorporating logical operators**: Train gemma-2-2b-it to understand and utilize logical operators (AND, OR,
NOT) within prompts to guide its reasoning process. * **Utilizing iterative prompting**: Develop a sequence of prompts that
gradually lead gemma-2-2b-it towards the desired solution, incorporating intermediate steps and feedback mechanisms. This
approach focuses on leveraging gemma-2-2b-it's existing strengths while mitigating its weaknesses in logical reasoning
through targeted prompt engineering. It is relatively simple to implement and has a high likelihood of feasibility given the
existing research on prompt engineering for LLMs.

Figure 27: Proposition idea generated by LLM


	Introduction
	Proposed Idea
	Machine Learning Workflow
	Characterizing Control Experiment
	Representation of ML Experiments

	Implementation
	Overview
	MLWorkflow
	Experiment Template Code

	Demonstration
	Quick Look at Prototype System’s Functioning
	Complexity and Generalizability

	Conclusion
	Appendix

